Resumo sobre Eletromagnetismo

Trabalho pronto escolar de física sobre Eletromagnetismo.

 40
Resumo sobre Eletromagnetismo

Conta uma lenda grega que o pastor Magnes se surpreendeu ao ver como a bola de ferro de seu bastão era atraída por uma pedra misteriosa, o âmbar (em grego, elektron). A história demonstra como é antigo o interesse pelos fenômenos eletromagnéticos.
Denomina-se eletromagnetismo a disciplina científica que estuda as propriedades elétricas e magnéticas da matéria e, em especial, as relações que se estabelecem entre elas.

Histórico. A existência de forças naturais de origem elétrica e magnética fora observada em contextos históricos independentes, mas só na primeira metade do século XIX um grupo de pesquisadores conseguiu unificar os dois campos de estudo e assentar os alicerces de uma nova concepção da estrutura física dos corpos.

No final do século XVIII Charles-Augustin de Coulomb e Henry Cavendish haviam determinado as leis empíricas que regiam o comportamento das substâncias eletricamente carregadas e o dos ímãs. Embora a similaridade entre as características dos dois fenômenos indicasse uma possível relação entre eles, só em 1820 se obteve prova experimental dessa relação, quando o dinamarquês Hans Christian Oersted, ao aproximar uma bússola de um fio de arame que unia os dois polos de uma pilha elétrica, descobriu que a agulha imantada da bússola deixava de apontar para o norte, orientando-se para uma direção perpendicular ao arame.

Pouco depois, André-Marie Ampère demonstrou que duas correntes elétricas exerciam mútua influência quando circulavam através de fios próximos um do outro. Apesar disso, até a publicação, ao longo do século XIX, dos trabalhos do inglês Michael Faraday e do escocês James Clerk Maxwell, o eletromagnetismo não foi - nem começou a ser - considerado um autêntico ramo da física.

Variáveis e magnitudes. Os fenômenos eletromagnéticos são produzidos por cargas elétricas em movimento. A carga elétrica, assim como a massa, é uma qualidade intrínseca da matéria e apresenta a particularidade de existir em duas variedades, convencionalmente denominadas positiva e negativa. A unidade elementar da carga é o elétron, partícula atômica de sinal negativo, embora sua magnitude não resulte em entidade suficiente para cálculos macroscópicos normais. Como unidade usual de carga usa-se então o coulomb; o valor da carga de um elétron equivale a 1,60 x 10-19 coulombs.

Duas cargas elétricas de mesmo sinal se repelem, e quando de sinais contrários se atraem. A força destas interações é diretamente proporcional a sua quantidade de carga e inversamente proporcional ao quadrado da distância que as separa. Para explicar a existência dessas forças adotou-se a noção de campo elétrico criado em torno de uma carga, de modo que a força elétrica que vai atuar sobre outra carga distanciada da primeira corresponde ao produto da quantidade de carga desta primeira por uma grandeza chamada intensidade de campo elétrico. A energia que este campo transmite à unidade de carga chama-se potencial elétrico e geralmente se mede em volts.

Uma das variáveis magnéticas fundamentais é a indução magnética, intimamente relacionada com a intensidade do campo magnético. A indução representa a força magnética exercida sobre um corpo por unidade de carga elétrica e de velocidade. A unidade de indução magnética é o tesla, que equivale a um weber por metro quadrado; o weber é uma medida de fluxo magnético (grandeza que reflete a densidade dos campos magnéticos). Tanto a intensidade de campo elétrico e magnético quanto a indução magnética apresentam um caráter vetorial e, por conseguinte, para descrevê-las adequadamente devem-se definir, para cada uma, sua magnitude, direção e sentido.

Por correlacionar a eletricidade e o magnetismo, adquiriu função especial no campo da física a noção de corrente elétrica, entendida como a circulação de cargas livres ao longo de um material condutor. Sua magnitude é determinada pela intensidade da corrente, que é a quantidade de cargas elétricas livres que circulam pelo condutor em um tempo determinado.

Chama-se ampère a unidade de intensidade de corrente resultante da passagem em um condutor de um coulomb de carga durante um segundo. Essa unidade tornou-se a mais importante do ponto de vista eletromagnético, levando o sistema internacional de unidades a ter a notação MKSA: metro, quilograma, segundo, ampère.
Indução eletromagnética. No decorrer do século XIX, as experiências de Orsted e Ampère demonstraram a influência que as correntes elétricas exercem sobre os materiais imantados, enquanto Faraday e Joseph Henry determinaram a natureza das correntes elétricas induzidas por campos magnéticos variáveis no espaço.

Os resultados de suas pesquisas, fundamento da indução eletromagnética, constituem a base do eletromagnetismo. Outros postulados enunciam a existência de dois polos elétricos, positivo e negativo, independentes e separados, e de dois polos magnéticos inseparáveis de nomes diferentes (norte e sul). Ampère, estimulado pelas descobertas de Orsted, aprofundou-se na pesquisa das forças magnéticas provocadas nas proximidades de uma corrente elétrica e demonstrou que esses impulsos se incrementam na razão direta da corrente e na razão inversa da distância ao fio pelo qual ela circula. Comprovou, além disso, que as forças induzidas estão em grande medida condicionadas pela orientação do fio condutor.

Ao aproximar-se um ímã de uma pilha elétrica observa-se uma variação em sua força eletromotriz, que é a medida da energia fornecida a partir de cada unidade de carga elétrica nela contida. Essa alteração é interrompida quando se imobiliza o ímã, e adquire sinal contrário quando este é afastado. Deduz-se daí que os campos magnéticos produzem correntes elétricas em um circuito e que o sentido de seu fluxo tende a compensar a perturbação exterior, com a indução simultânea de um campo magnético oposto ao inicial.

Analogamente, uma corrente elétrica que circula em um condutor gera um campo magnético associado que, como efeito derivado, induz no condutor uma corrente de sentido contrário ao da inicial. Esse fenômeno é conhecido como autoindução, e a relação entre o campo magnético e a intensidade da corrente induzida por ele é fornecida por um coeficiente denominado indutância, que depende das características físicas e geométricas do material condutor. A unidade de medida de indução é o henry, definido como a grandeza gerada entre dois circuitos dispostos de forma tal que quando num deles a intensidade varia em um ampère por segundo seja induzida no outro uma força eletromotriz de um volt.
Interpretação do eletromagnetismo. Desde o advento das ideias inovadoras de Isaac Newton, estabeleceu-se uma interpretação causal do universo segundo a qual todo efeito observado obedeceria a forças exercidas por objetos situados a certa distância. Nesse contexto histórico nasceu a teoria eletromagnética, segundo a qual as atrações e repulsões elétricas e magnéticas resultavam da ação de corpos distantes.

Era preciso, pois, encontrar a verdadeira causa final dessas forças, buscando-se uma analogia com a massa gravitacional de Newton e, simultaneamente, explicar de forma rigorosa os mecanismos de interação eletromagnética entre os corpos. Coube a Ampère, a partir de seus trabalhos sobre correntes elétricas, expor a teoria da existência de partículas elétricas elementares que, ao se deslocar no interior das substâncias, causariam também os efeitos magnéticos. No entanto, em suas experiências, ele não conseguiu encontrar essas partículas.

Por outro lado, Faraday introduziu a noção de campo, que teve logo grande aceitação e constituiu um marco no desenvolvimento da física moderna. Concebeu o espaço como cheio de linhas de força -- correntes invisíveis de energia que governavam o movimento dos corpos e eram criadas pela própria presença dos objetos. Assim, uma carga elétrica móvel produz perturbações eletromagnéticas a seu redor, de modo que qualquer outra carga próxima detecta sua presença por meio das linhas do campo. Esse conceito foi desenvolvido matematicamente pelo britânico James Clerk Maxwell, e a força de seus argumentos acabou com a da ideia de forças que agiam sob controle remoto, vigente em sua época.

Os múltiplos trabalhos teóricos sobre o eletromagnetismo culminaram em 1897, quando Sir Joseph John Thomson descobriu o elétron, cuja existência foi deduzida do desvio dos raios catódicos na presença de um campo elétrico. A natureza do eletromagnetismo foi confirmada ao se determinar a origem das forças magnéticas no movimento orbital dos elétrons ao redor dos núcleos dos átomos.
Ondas eletromagnéticas. O conceito de onda eletromagnética, apresentado por Maxwell em 1864 e confirmado experimentalmente por Heinrich Hertz em 1886, é utilizado para demonstrar a natureza eletromagnética da luz.

Quando uma carga elétrica se desloca no espaço, a ela se associam um campo elétrico e outro magnético, interdependentes e com linhas de força perpendiculares entre si. O resultado desse conjunto é uma onda eletromagnética que emerge da partícula e, em condições ideais - isto é, sem a intervenção de qualquer fator de perturbação - se move a uma velocidade de 299.793km/s, em forma de radiação luminosa. A energia transportada pela onda é proporcional à intensidade dos campos elétrico e magnético da partícula emissora e fixa as diferentes frequências do espectro eletromagnético.

Aplicações. A teoria eletromagnética é muito usada na construção de geradores de energia elétrica, dentre estes destacam-se os alternadores ou geradores de corrente alternada, que propiciam maior rendimento que os de corrente contínua por não sofrerem perdas mediante atrito. A base do alternador é o eletroímã, núcleo em geral de ferro doce e em torno do qual se enrola um fio condutor revestido de cobertura isolante. O dispositivo gira a grande velocidade, de modo que os polos magnéticos mudam de sentido e induzem correntes elétricas que se invertem a cada instante. Com isso, as cargas circulam várias vezes pela mesma seção do condutor. Os eletroímãs também são utilizados na fabricação de elevadores e instrumentos cirúrgicos e terapêuticos. Seu uso abrange diversos campos industriais, uma vez que os campos que geram podem mudar de direção e de intensidade